Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alireza Haghiri, ${ }^{\text {a }}$ Matthias
 Wagner $^{\mathrm{a}}$ and Michael Bolte ${ }^{\mathrm{b}_{*}}$

${ }^{\text {a }}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{C})=0.005 \AA$
R factor $=0.032$
$w R$ factor $=0.076$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were
automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bromopentacarbonylmanganese

The Mn and Br atoms as well as one of the carbonyl groups of the title compound, $\left[\mathrm{MnBr}(\mathrm{CO})_{5}\right]$, are located on a crystallographic mirror plane. As a result, there is just half a molecule in the asymmetric unit displaying C_{s} symmetry. However, the deviations from $C_{4 v}$ symmetry are very small. $\operatorname{BrMn}(\mathrm{CO})_{5}$ is isomorphous with $\mathrm{ClMn}(\mathrm{CO})_{5}$ and $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$.

Comment

The central Mn atom in $\mathrm{BrMn}(\mathrm{CO})_{5}$ is octahedrally coordinated. The molecule has C_{s} symmetry. Mn, Br and one of the carbonyl groups are located on a mirror plane perpendicular to the b axis. The deviations from $C_{4 v}$ symmetry are very small. The $\mathrm{Mn}-\mathrm{C}$ bond trans to the $\mathrm{Mn}-\mathrm{Br}$ bond is significantly shorter than the equatorial $\mathrm{Mn}-\mathrm{C}$ bonds. $\mathrm{BrMn}(\mathrm{CO})_{5}$ is isomorphous with $\mathrm{ClMn}(\mathrm{CO})_{5}$ (Greene \& Bryan, 1971) and $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$ (Andrews et al., 1983). Unfortunately, the methyl group in the latter structure is statistically disordered over all six coordination sites about the Mn atom.

Experimental

$\operatorname{BrMn}(\mathrm{CO})_{5}$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ and heated to 353 K for 24 h . When the solution was cooled to room temperature, $\mathrm{BrMn}(\mathrm{CO})_{5}$ precipitated as yellow crystals.

Crystal data

$\left[\operatorname{MnBr}(\mathrm{CO})_{5}\right]$	Mo $K \alpha$ radiation
$M_{r}=274.90$	Cell parameters from 11620
Orthorhombic, Pnma	reflections
$a=11.6252(16) \AA$	$\theta=3.8-27.6^{\circ}$
$b=11.3317(18) \AA$	$\mu=6.66 \mathrm{~mm}^{-1}$
$c=6.0403(10) \AA$	$T=100(2) \mathrm{K}$
$V=795.7(2) \AA^{3}$	Prism, yellow
$Z=4$	$0.22 \times 0.14 \times 0.12 \mathrm{~mm}$
$D_{x}=2.295 \mathrm{Mg} \mathrm{m}^{-3}$	

Data collection

Stoe IPDS-II two-circle	958 independent reflections
\quad diffractometer	772 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.074$
Absorption correction: multi-scan	$\theta_{\max }=27.6^{\circ}$
\quad (MULABS; Spek, 1990; Blessing,	$h=-14 \rightarrow 15$
1995)	$k=-14 \rightarrow 14$
$T_{\min }=0.290, T_{\max }=0.452$	$l=-7 \rightarrow 7$
9213 measured reflections	

9213 measured reflections

Refinement

$$
\begin{aligned}
& \text { Refinement on } F^{2} \\
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \\
& w R\left(F^{2}\right)=0.076 \\
& S=1.00 \\
& 958 \text { reflections } \\
& \text { 61 parameters }
\end{aligned}
$$

Received 31 July 2003
Accepted 4 August 2003
Online 15 August 2003

inorganic papers

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Mn} 1-\mathrm{C} 1$	$1.821(6)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.149(7)$
$\mathrm{Mn} 1-\mathrm{C} 2$	$1.889(4)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.134(4)$
$\mathrm{Mn} 1-\mathrm{C} 3$	$1.892(4)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.132(4)$
$\mathrm{Mn} 1-\mathrm{Br} 1$	$2.5158(10)$		
$\mathrm{C} 1-\mathrm{Mn} 1-\mathrm{C} 2$	$92.41(16)$	$\mathrm{C} 2-\mathrm{Mn} 1-\mathrm{Br} 1$	$87.51(11)$
$\mathrm{C} 2-\mathrm{Mn} 1-\mathrm{C} 2$	$89.3(2)$	$\mathrm{C} 3-\mathrm{Mn} 1-\mathrm{Br} 1$	$88.16(11)$
$\mathrm{C} 2-\mathrm{Mn} 1-\mathrm{C} 3^{\mathrm{i}}$	$175.46(16)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Mn} 1$	$179.0(5)$
$\mathrm{C} 1-\mathrm{Mn} 1-\mathrm{C} 3$	$91.93(16)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Mn} 1$	$178.1(3)$
$\mathrm{C} 2-\mathrm{Mn} 1-\mathrm{C} 3$	$89.16(14)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{Mn} 1$	$177.2(3)$
$\mathrm{C} 1-\mathrm{Mn} 1-\mathrm{Br} 1$	$179.88(17)$		

Symmetry code: (i) $x, \frac{1}{2}-y, z$.

The deepest hole in the difference electron density map is located 0.83 Å from Br1.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Andrews, M. A., Eckert, J., Goldstone, J. A., Passell, L. \& Swanson, B. (1983). J. Am. Chem. Soc. 105, 2262-2269.

Figure 1

Perspective view of the title compound, with the atom-numbering scheme; displacement ellipsoids are at the 50% probability level. The symmetry operator for generating equivalent atoms is (i) $x, \frac{1}{2}-y, z$.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Greene, P. T. \& Bryan, R. F. (1971). J. Chem. Soc. A, pp. 1559-1562.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical
X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

