Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alireza Haghiri,^a Matthias Wagner^a and Michael Bolte^b*

^aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 100 KMean $\sigma(\text{O-C}) = 0.005 \text{ Å}$ R factor = 0.032 wR factor = 0.076 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The Mn and Br atoms as well as one of the carbonyl groups of the title compound, $[MnBr(CO)_5]$, are located on a crystallographic mirror plane. As a result, there is just half a molecule in the asymmetric unit displaying C_s symmetry. However, the deviations from $C_{4\nu}$ symmetry are very small. BrMn(CO)₅ is isomorphous with ClMn(CO)₅ and CH₃Mn(CO)₅.

Bromopentacarbonylmanganese

Received 31 July 2003 Accepted 4 August 2003 Online 15 August 2003

Comment

The central Mn atom in BrMn(CO)₅ is octahedrally coordinated. The molecule has C_s symmetry. Mn, Br and one of the carbonyl groups are located on a mirror plane perpendicular to the *b* axis. The deviations from $C_{4\nu}$ symmetry are very small. The Mn-C bond *trans* to the Mn-Br bond is significantly shorter than the equatorial Mn-C bonds. BrMn(CO)₅ is isomorphous with ClMn(CO)₅ (Greene & Bryan, 1971) and CH₃Mn(CO)₅ (Andrews *et al.*, 1983). Unfortunately, the methyl group in the latter structure is statistically disordered over all six coordination sites about the Mn atom.

Experimental

 $BrMn(CO)_5$ was dissolved in C_6D_6 and heated to 353 K for 24 h. When the solution was cooled to room temperature, $BrMn(CO)_5$ precipitated as yellow crystals.

Crystal data	
[MnBr(CO) ₅] $M_r = 274.90$ Orthorhombic, <i>Pnma</i> a = 11.6252 (16) Å b = 11.3317 (18) Å c = 6.0403 (10) Å $V = 795.7 (2) Å^3$ Z = 4 $D_x = 2.295 \text{ Mg m}^{-3}$	Mo $K\alpha$ radiation Cell parameters from 11620 reflections $\theta = 3.8-27.6^{\circ}$ $\mu = 6.66 \text{ mm}^{-1}$ T = 100 (2) K Prism, yellow $0.22 \times 0.14 \times 0.12 \text{ mm}$
Store IPDS-II two-circle diffractometer ω scans Absorption correction: multi-scan (<i>MULABS</i> ; Spek, 1990; Blessing, 1995) $T_{min} = 0.290, T_{max} = 0.452$ 9213 measured reflections	958 independent reflections 772 reflections with $I > 2\sigma(I)$ $R_{int} = 0.074$ $\theta_{max} = 27.6^{\circ}$ $h = -14 \rightarrow 15$ $k = -14 \rightarrow 14$ $l = -7 \rightarrow 7$
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.076$ S = 1.00 958 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0409P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.60 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.25 \text{ e} \text{ Å}^{-3}$

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

61 parameters

Table 1		
Selected	geometric parameters (Å, °).	

Mn1-C1	1.821 (6)	O1-C1	1.149 (7)
Mn1-C2	1.889 (4)	O2-C2	1.134 (4)
Mn1-C3	1.892 (4)	O3-C3	1.132 (4)
Mn1-Br1	2.5158 (10)		
C1-Mn1-C2	92.41 (16)	C2-Mn1-Br1	87.51 (11)
$C2^{i}-Mn1-C2$	89.3 (2)	C3-Mn1-Br1	88.16 (11)
C2-Mn1-C3i	175.46 (16)	O1-C1-Mn1	179.0 (5)
C1-Mn1-C3	91.93 (16)	O2-C2-Mn1	178.1 (3)
C2-Mn1-C3	89.16 (14)	O3-C3-Mn1	177.2 (3)
C1-Mn1-Br1	179.88 (17)		

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

The deepest hole in the difference electron density map is located 0.83 Å from Br1.

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL*97.

References

Andrews, M. A., Eckert, J., Goldstone, J. A., Passell, L. & Swanson, B. (1983). J. Am. Chem. Soc. 105, 2262–2269.

Figure 1

Perspective view of the title compound, with the atom-numbering scheme; displacement ellipsoids are at the 50% probability level. The symmetry operator for generating equivalent atoms is (i) $x, \frac{1}{2} - y, z$.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Greene, P. T. & Bryan, R. F. (1971). J. Chem. Soc. A, pp. 1559-1562.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.